Oh, J. W. et al. A guide to studying human hair follicle cycling in vivo. J. Invest. Dermatol. 136, 34–44. https://doi.org/10.1038/JID.2015.354 (2016).
Legué, E. & Nicolas, J. F. Hair follicle renewal: Organization of stem cells in the matrix and the role of stereotyped lineages and behaviors. Development 132, 4143–4154. https://doi.org/10.1242/dev.01975 (2005).
Saceda-Corralo, D. et al. Association of inflammation with progression of hair loss in women with frontal fibrosing alopecia. JAMA Dermatol. 156, 700–702. https://doi.org/10.1001/jamadermatol.2020.0359 (2020).
Hasan, R. et al. Effects of hormones and endocrine disorders on hair growth. Cureus 14, e32726. https://doi.org/10.7759/cureus.32726 (2022).
Arck, P. C. et al. Stress inhibits hair growth in mice by induction of premature catagen development and deleterious perifollicular inflammatory events via neuropeptide substance P-dependent pathways. Am. J. Pathol. 162, 803–814. https://doi.org/10.1016/S0002-9440(10)63877-1 (2003).
Hughes, E. C., Syed, H. A. & Saleh, D. Telogen Effluviumin. StatPearls. https://pubmed.ncbi.nlm.nih.gov/28613598/ (2025).
Almohanna, H. M., Ahmed, A. A., Tsatalis, J. P. & Tosti, A. The role of vitamins and minerals in hair loss: A review. Dermatol. Ther. (Heidelb) 9, 51–70. https://doi.org/10.1007/s13555-018-0278-6 (2019).
Mahmud, M. R. et al. Impact of gut microbiome on skin health: Gut-skin axis observed through the lenses of therapeutics and skin diseases. Gut Microbes 14, 2096995. https://doi.org/10.1080/19490976.2022.2096995 (2022).
Mock, D. M. Skin manifestations of biotin deficiency. Semin. Dermatol. 10, 296–302 (1991).
Hayashi, A. et al. Intestinal dysbiosis and biotin deprivation induce alopecia through overgrowth of Lactobacillus murinus in mice. Cell Rep. 20, 1513–1524. https://doi.org/10.1016/j.celrep.2017.07.057 (2017).
Brotzu, G. et al. A liposome-based formulation containing equol, dihomo-gamma-linolenic acid and propionyl-l-carnitine to prevent and treat hair loss: A prospective investigation. Dermatol. Ther. 32, e12778. https://doi.org/10.1111/dth.12778 (2019).
Soh Iwashita, H. M., Ueno, T., Hamamoto, K., Uchiyama, S. & Ueki, R. Equol status affects hair aging in postmenopausal women: A cross-sectional study. J. Jpn. Soc. Aesthetic Dermatol. 30, 8–17 (2020).
Google Scholar
Nam, W. et al. Lactobacillus paracasei HY7015 promotes hair growth in a telogenic mouse model. J. Med. Food 24, 741–748. https://doi.org/10.1089/jmf.2020.4860 (2021).
Hornung, J. P. The human raphe nuclei and the serotonergic system. J. Chem. Neuroanat. 26, 331–343. https://doi.org/10.1016/j.jchemneu.2003.10.002 (2003).
Raghupathi, R. et al. Identification of unique release kinetics of serotonin from guinea-pig and human enterochromaffin cells. J. Physiol. 591, 5959–5975. https://doi.org/10.1113/jphysiol.2013.259796 (2013).
Liu, N. et al. The mechanism of secretion and metabolism of gut-derived 5-hydroxytryptamine. Int. J. Mol. Sci. 22, 7931. https://doi.org/10.3390/ijms22157931 (2021).
Layunta, E. et al. Intestinal serotonergic system is modulated by toll-like receptor 9. J. Physiol. Biochem. 78, 689–701. https://doi.org/10.1007/s13105-022-00897-2 (2022).
Karmakar, S. & Lal, G. Role of serotonin receptor signaling in cancer cells and anti-tumor immunity. Theranostics 11, 5296–5312. https://doi.org/10.7150/thno.55986 (2021).
Bamalan, O. A., Moore, M. J. & Al Khalili, Y. Physiology, Serotoninin. StatPearls. https://pubmed.ncbi.nlm.nih.gov/31424752/ (2025).
Wu, H. L. et al. 5-HT1A/1B receptors as targets for optimizing pigmentary responses in C57BL/6 mouse skin to stress. PLoS ONE 9, e89663. https://doi.org/10.1371/journal.pone.0089663 (2014).
Amireault, P. & Dubé, F. Intracellular cAMP and calcium signaling by serotonin in mouse cumulus-oocyte complexes. Mol. Pharmacol. 68, 1678–1687. https://doi.org/10.1124/mol.104.010124 (2005).
Kageyama, T. et al. Reprogramming of three-dimensional microenvironments for in vitro hair follicle induction. Sci. Adv. 8, eadd4603. https://doi.org/10.1126/sciadv.add4603 (2022).
Kageyama, T., Miyata, H., Seo, J., Nanmo, A. & Fukuda, J. In vitro hair follicle growth model for drug testing. Sci. Rep. 13, 4847. https://doi.org/10.1038/s41598-023-31842-y (2023).
Kageyama, T., Seo, J., Yan, L. & Fukuda, J. Effects of oxytocin on the hair growth ability of dermal papilla cells. Sci. Rep. 13, 15587. https://doi.org/10.1038/s41598-023-40521-x (2023).
Kageyama, T., Seo, J., Yan, L. & Fukuda, J. Cinnamic acid promotes elongation of hair peg-like sprouting in hair follicle organoids via oxytocin receptor activation. Sci. Rep. 14, 4709. https://doi.org/10.1038/s41598-024-55377-y (2024).
Kageyama, T., Seo, J., Yan, L. & Fukuda, J. Effects of oxytocin receptor agonists on hair growth promotion. Sci. Rep. 14, 23935. https://doi.org/10.1038/s41598-024-74962-9 (2024).
Moskowitz, M. A. & Cutrer, F. M. Sumatriptan: A receptor-targeted treatment for migraine. Annu. Rev. Med. 44, 145–154. https://doi.org/10.1146/annurev.me.44.020193.001045 (1993).
Langan, E. A., Philpott, M. P., Kloepper, J. E. & Paus, R. Human hair follicle organ culture: Theory, application and perspectives. Exp. Dermatol. 24, 903–911. https://doi.org/10.1111/exd.12836 (2015).
Agramunt, J. et al. Mechanical stimulation of human hair follicle outer root sheath cultures activates adjacent sensory neurons. Sci. Adv. 9, eadh3273. https://doi.org/10.1126/sciadv.adh3273 (2023).
Grymowicz, M. et al. Hormonal effects on hair follicles. Int. J. Mol. Sci. 21, 5342. https://doi.org/10.3390/ijms21155342 (2020).
Nestor, M. S., Ablon, G., Gade, A., Han, H. & Fischer, D. L. Treatment options for androgenetic alopecia: Efficacy, side effects, compliance, financial considerations, and ethics. J. Cosmet. Dermatol. 20, 3759–3781. https://doi.org/10.1111/jocd.14537 (2021).
Choi, S. et al. Corticosterone inhibits GAS6 to govern hair follicle stem-cell quiescence. Nature 592, 428–432. https://doi.org/10.1038/s41586-021-03417-2 (2021).
Niu, Y. L. et al. Melatonin promotes hair regeneration by modulating the Wnt/beta-catenin signalling pathway. Cell Prolif. 57, e13656. https://doi.org/10.1111/cpr.13656 (2024).
Kang, W., Park, S., Choi, D., Son, B. & Park, T. Activation of cAMP signaling in response to alpha-phellandrene promotes vascular endothelial growth factor levels and proliferation in human dermal papilla cells. Int. J. Mol. Sci. 23, 8959. https://doi.org/10.3390/ijms23168959 (2022).
Lee, C. Y. et al. Hair growth is promoted by BeauTop via expression of EGF and FGF-7. Mol. Med. Rep. 17, 8047–8052. https://doi.org/10.3892/mmr.2018.8917 (2018).
Pejcic, A. V. & Paudel, V. Alopecia associated with the use of selective serotonin reuptake inhibitors: Systematic review. Psychiatry Res. 313, 114620. https://doi.org/10.1016/j.psychres.2022.114620 (2022).
Krasowska, D., Szymanek, M., Schwartz, R. A. & Myśliński, W. Cutaneous effects of the most commonly used antidepressant medication, the selective serotonin reuptake inhibitors. J. Am. Acad. Dermatol. 56, 848–853. https://doi.org/10.1016/j.jaad.2006.10.020 (2007).
McCorvy, J. D. & Roth, B. L. Structure and function of serotonin G protein-coupled receptors. Pharmacol. Ther. 150, 129–142. https://doi.org/10.1016/j.pharmthera.2015.01.009 (2015).
Kazunori Sasaki, A. K. O. & Isoda, H. Hair Growth-Promoting effect of the coffee bean residue extract on hair follicle dermal papilla cells via the activation of autophagy. J. Funct. Foods. https://doi.org/10.1016/j.jff.2024.106251 (2024).
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587–D592. https://doi.org/10.1093/nar/gkac963 (2023).